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ABSTRACT 

One of the difficulties in the application of non- 
relativistic quantum mechanics to molecular systems has 
been the evaluation of the integrals that arise from the u s e  
of trial wavefunctions. The present investigation i s  con- 
cerned with a derivation and expression for the general 
two-center Coulomb integral (over Slater-type atomic orbit- 
als) based on the Fourier-convolution method. All of the 
Coulomb integrals through N = 4 are given in explicit form 
in terms of an auxiliary function WkJ which is a 
one-dimensional integral. 

1. INTRODUCTION 

One of the major problems in the application of nonrelativistic quantum mechanics to molecular 

systems for the pas t  few decades h a s  been the evaluation of the integrals that arise from the use of tr ial  

wavefunctions. If these wavefunctions are expanded in terms of Slater-type atomic orbitals, one needs to 

evaluate one- and two-electron integrals associated with orbitals on one, two, three, and four different atomic 

centers. Although the one-center integrals can be evaluated rather easily,  the evaluation of the two-electron, 

two-center integrals that appear (as,  for example, the Coulomb, exchange and hybrid integrals) i s still a 

difficult task. Recently, Ruedenberg (Ref. 1) has pursued an approach by which all the many-center integrals 

can be reduced to the evaluation of a few of the simpler two-center integrals, the Coulomb integrals. However, 

even for the relatively simple two-center Coulomb integrals, a general analytical treatment h a s  been unavail- 

a b l r u n t i l  recently. 

/ 

Roothaan (Ref. 2,3) made the first  unified attempt in 1951 to evaluate all the two-center Coulomb - 
integrals that arise from the u s e  of Is, 2s, and 2p Slater-type atomic orbitals and gave explicit  forms. Other 
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specific Coulomb integrals have been given in explicit  form by Lofthus (Ref. 41, P r e u s s  (Ref. 5), and Kotani 

(Ref. 6 ) .  More recently, Wahl, Cade, and Roothaan (Ref. 7 )  have devised a general method for the evaluation 

of the Coulomb and hybrid integrals, which involves an analytical  integration over the coordinates of the f i rs t  

electron and then a double numerical integration over the second electron to  obtain the result. Finally,  a n  

analytical  approach has  been given by Ruedenberg and 0-Ohata (Ref. 8), which i s  based on the observation 

that the Coulomb integral C and the corresponding overlap integral S are related by Poisson’s equation 

AC = - 47rS. Using the analytical resul t  for the overlap integral given by Ruedenberg, 0-Ohata, and Wilson 

(Ref. 9), Ruedenberg and 0-Ohata  solved Poisson’s equation and obtained the Coulomb integral C expressible 

in terms of a set of auxiliary functions related to integrals over confluent hypergeometric functions (Ref. 10). 

The present investigation i s  concerned with an alternative derivation and expression for the Coulomb 

integral, based on the Fourier-convolution method introduced by Prosser  and Blanchard (Ref. 11) for one- 

electron, two-center integrals and used  by the author for one-electron, two-center integrals over solid spherical  

harmonics (Ref. 12) and later extended to  two-electron, one- and two-center integrals (Ref. 13) and to  the two- 

electron integrals that ar ise  in the evaluation of zero-field spli t t ing (Ref. 14). 

2 
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II. EVALUATION OF THE COULOMB INTEGRAL 

The Coulomb integral 

C;&'*l(p,, pb; R )  = [ N L M a  IN'L 'MdI  = CNLMl ,l - 1 N ' L  ' M  ' I b 2  d r l  d r2  J '12 

where [ N L M ]  i s  the basic charge distribution, defined by Roothaan (Ref. 2) as 

and 

i s  equivalent, by the convolution theorem, to 

where the superscript refers to the Fourier transform, i .e. ,  

(1) 

3 
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The transform of the basic charge distribution [ N L M ]  h a s  been given by the author (Ref. 12) and is 

where 

[XI means the largest  integer in X 

U !  
i s  the binomial coefficient (1) = b ! ( a  - b )  ! 

K, u, v are the spherical coordinates of K 

Table 1 lists the transforms of [ N L M ]  for N = 1, 2, 3, and 4, using the standard notation (Ref. 2) 

n, A, Q, --. . For a negative value of L = 0, 1, 2, 3 ... called S, P ,  D, F ... and M = 0, 1, 2, 3 .-. called 

M, a bar i s  placed over the appropriate symbol (e.g., M = -2 i s  A). The transform of r;: i s  simply given by 

4nK2. Integrating over the angular coordinates u and v of K, simplifying the binomial coefficients and 

rearranging the resulting expression, we have 

- 

4 
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L <  

(7) 
(N - L - 2s + lIZS (N' - L ' - 2t + 1Izt (s + 1IL ( t  + 1IL ' 

P Z t  
x (-1)S+t 

r=O 
2s 

(2L + 2)2s (2L ' + 2Izt Pa 

where L ,  is the lesser of L and L 

Condon-Shortley coefficients as given by Slater (Ref. 151, as 

i,(d are the spherical Bessel functions (Ref. 101, and CL (LM;L ' M )  are the 

x P, (cos u) sin u du 

Finally, introducing the coefficients 

22L+2L1+1 -L -L '  
pa p b  Q f '  = 

( 2 L )  ! ( 2 L  'I! [ ( 2 L  + 1) ( 2 L  ' + 1)l 
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and 

and the auxiliary function 

we obtain a s  the result for the general Coulomb integral 

6 
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111. DISCUSSION 

The  expression for the Coulomb integral Eq. (11) involves a triple summation over the indices s, t, 

and r. The  summation is over only a limited number of terms, as, for example, for N = N' = 5, the maximum 

number of terms arising is 18 (when L = L ' = 1). Often, the number of terms is further lowered by the use  of 

the recurrence relation for the spherical  Bessel  functions 

We a l so  note from Eq. (11) that the Coulomb integral vanishes if M and M' are different, and that the integral 

is independent of M, i.e., Roothaan's Theorem I1 (Ref. 2). 

For a given value of N = N I ,  the number of different Coulomb integrals that  arise is 

1 

120 
- N ( N  + 1) ( N  + 2) (3N2 + 6N + 11) (13) 

Table 2 gives  a l l  83 Coulanb integrals (through N = 4) in terms of the auxiliary function I defined by Eq. (10). 

The final difficulty i s  the one-dimensional infinite integral over K. Although this integral can be evaluated 

analytically (by using the techniques used for the evaluation of auxiliary functions A(2rn; p , q )  and 

B ( 2 m  + 1; p, q) of Ref. 14) , the result  is rather cumbersome and, in fact, the integration can simply and 

. rapidly be done numerically. Moreover, retaining the integral and evaluating it numerically allows one to 

either let the charges be equal (pa = p b )  or l e t  the distance R be zero (one-center CouIomb integral), or both, 

with no additional complications if we recognize that 

7 
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Some recurrence relations that may be useful for the W functions are 

and 

a 
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[lSl 

[2s1 

[3s1 

Table 1. Transforms of [ N L M I  for N = 1, 2, 3, and 4 

= p4 (k2 + p2)-, 

1 

3 
= - p4 [4p2 (k2 + p3-3  - (k2 + p2)-21 

P, (cos 11) 

P i  (cos u)  cos u 

P: ( c o s  u) s in  u 

= 2ik p5 (k2 + p2)‘3 

[lSI 

[2s1 

[2PZl 

[2PrIl 

[2Piil 

[3s1 

[3PZ1 

[3PrI1 

[3Pril 

I 2 fl P, (cos u) 

2 P i  (cos u) cos u 

P i  (cos u) cos 2u 

2 
9 

[3DfII 

[3DAl 

= - 6 p6 [p2 ( k 2  + p2)-4 - ( k 2  + p2)-3] 2 P; (cos u) s i n  u 

\ P; (cos u) s i n  2u 

1 

5 

PI  (cos u) 

I 
[4sl = - p6 [16 p4 (k2 + p2)-5 - 12 p2 (k2 + p2)-4 + ( k 2  + P,)-~]  

i P: (cos u) s in  u 

2 
5 

[4Pm 

[4PZl 

= - ik p7 [ 8  p2 (k2 + p2)-5 - 3 (k2 + p2)’4] p i  (cos u) cos 

10 

I [4Pi=Tl 

= p6 [2p2 (k2 + p2)-4 - (k2 + P,)-~]  

P, (cos u) 
2 

5 
= - ik p5 [6p2 (k2  + p2)-4 - ( A 2  + p2)-3] P: (cos  u) cos  u 

[ P: ( cos  u) s i n  u 

I 2 fl P, (cos u) 

2 P i  (cos u) cos u I 
P i  (cos u) cos 2u I 

\ P; (cos u) s i n  2u 

2 
[4PrI] = - ik p7 [ 8  p2 (k2 + p2)-5 - 3 (k2 + P ~ ) ’ ~ ]  Pi (cos  u) cos u I 5 

[4Pi=Tl P: (cos u) s in  u ) 
10 
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Table 1 (Cont’d) 

2 

225 
= -  fl i k  p7 [ p 2  ( k 2  + p 2 ) - 5  - ( k 2  + P ~ ) - ~ ]  

6 (IO- P 3  (cos  u) 

2 (ir P ;  (cos 3 cos u 

fl P i  (cos u) cos 2v 

P i  (cos u) cos  3u 

2 P :  (cos  a) s in  u 

6 P ;  (cos u) s i n  2u 

P ;  (cos u) s in  3u 

11 
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* 
Table 2. Coulomb integrals expressed in terms of auxiliary function W 

*In  the above  table ,  WP.4 (pa, pb;  R )  is abbreviated to  Wk;. 
m,n 

12 
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I Table 2 (Cont’d) 
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Table 2 (Cont'd) 
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Table 2 (Cont'd) 
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Table 2 (Cont'd) 

128 18 4 
[ 4 m a  14 FZJ = - 

1575 

17 
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Table 2 (Cont'd) 

16 1 
3 

3 on,] = - 0 p-1 a p-2 b [';:- S 

18 
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Table 2 (Cont'd) 

[3  DOa 

[3  DAa 

128 
1575 

- - -  p i 3  p i 3  [25 '55: - 14 + 3 W:;] 

- _  32 -2 -2 44 
- 3 pa pb '20 

32 1 - _  

32 1 1 
3 

-2 -3 45 64. 
15 = - 6 Pa Pb '30 

64 1 
15 

128 
105 

- - - p i 3  p i 3  [6 W i t  - W;:] 

lZ8 -3 -3 55 - -  - Pa pb '30 15 
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